Pitch then power: limitations to acceleration in quadrupeds
نویسندگان
چکیده
Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures--both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing maximal acceleration (and deceleration for ponies) in a competitive setting. We show that maximum acceleration and deceleration ability may be accounted for by two simple limits, one mechanical and one physiological. At low speed, acceleration and deceleration may be limited by the geometric constraints of avoiding net nose-up or tail-up pitching, respectively. At higher speeds, muscle power appears to limit acceleration.
منابع مشابه
Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).
Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleratio...
متن کامل3D control of a high-speed quadruped trot
Purpose – Legged vehicles offer several advantages over wheeled vehicles, particularly on broken terrain, but are presently too slow to be considered for many high-speed tasks. This paper presents an effective 3D controller for a high-speed quadruped trot. Design/methodology/approach – To successfully regulate forward velocity and heading, secondary motions such as body pitch and roll must be s...
متن کاملDifferent Types of Pitch Angle Control Strategies Used in Wind Turbine System Applications
The most common controller in wind turbine is the blade pitch angle control in order to get the desired power. Controlling the pitch angle in wind turbines has a direct impact on the dynamic performance of the machine and fluctuations in the power systems. Due to constant changes in wind speed, the wind turbines are of nonlinear and multivariate system. The design of a controller that can ad...
متن کاملDesigning a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed
One of the main tasks of the control systems in the wind turbines is to maintain the power of the wind when its wind speed proceed its nominal value. Because the failure to maintain the power in its nominal value in the region of the turbine curve damages the turbine and increases the mechanical stress. This object is obtained by controlling the pitch angle in the third region of the turbine cu...
متن کاملIntelligent Control for the Variable-Speed Variable-Pitch Wind Energy System
In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS) is presented. Based on wind energy conversion systems, combining artificial neural network (ANN) control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track ...
متن کامل